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Motivation

The Finite Element Method (FEM) in Fluid Mechanics

@ Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

o Flexibility in handling complex geometries.
o Ability to handle different forms of
boundary conditions.

@ FEM is quasi-optimal for elliptic
(diffusion-dominated) PDEs: assures good
performance of the computation at any mesh
resolution.
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layers for a canonical fluid problem; then generalize.



Advection-Diffusion Equation

Scalar Advection-Diffusion Equation

Lc=—-krkAc+a-Vc =f
~——

diffusion  advection

@ 2D advection velocity vector:
a=(a,a) =|al(cosa,sing).
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
e Semi-conductor device modeling.
@ Usual scalar model for the more challenging Navier-Stokes
equations.

@ Global Péclet number (L = length scale associated with Q):

_ rate of advection _ Lja| Re. Pr  (thermal diffusion)
~ rate of diffusion & Sc (mass diffusion)




Advection-Diffusion Equation

Advection-Dominated Regime

@ Typical applications: flow is
advection-dominated.

Pe=150

Figure 1: Galerkin @ solution
(color) vs. exact solution (black)
(Pe = 150)

Advection-Dominated
(High Pe) Regime
4
Sharp gradients in exact solution
I
Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

@ Some classical remedies:

o Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

e RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.




Discontinuous Enrichment Method

History of the Discontinuous Enrichment Method

(DEM) and lts Success

@ Acoustic scattering problems (Helmholtz equation) [4,5].

o First developed by Farhat et. al in 2000 for the
Helmholtz equation.

o A family of 3D hexahedral DEM elements for medium
frequency problems achieved the same solution
accuracy as Galerkin elements of comparable
convergence order using 4-8 times fewer dofs, and up
to 60 times less CPU time [4].

e Domain decomposition-based iterative solver for 2D
and 3D acoustic scattering problems in medium- and
high- frequency regimes has been developed [5].

@ Wave propagation in elastic media (Navier’'s equation) [6].

@ Fluid-structure interaction problems (Navier’'s equation
and the Helmholtz equation) [7, 8].
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History of the Discontinuous Enrichment Method

(DEM) and lts Success

@ Acoustic scattering problems (Helmholtz equation) [4,5].

o First developed by Farhat et. al in 2000 for the
Helmholtz equation.

o A family of 3D hexahedral DEM elements for medium
frequency problems achieved the same solution
accuracy as Galerkin elements of comparable
convergence order using 4-8 times fewer dofs, and up
to 60 times less CPU time [4].

e Domain decomposition-based iterative solver for 2D
and 3D acoustic scattering problems in medium- and
high- frequency regimes has been developed [5].

@ Wave propagation in elastic media (Navier’'s equation) [6].

@ Fluid-structure interaction problems (Navier’'s equation
and the Helmholtz equation) [7, 8].

Excellent performance motivates
development of DEM for other applications
— Fluid Mechanics




Enrichment Field in DEM

Idea of DEM:

“Enrich” the usual Galerkin polynomial field V¥ by the free-space solutions to
the governing homogeneous PDE Lc = 0.

c"=cP+cfFeVvP o (VEWVP)

where

VE = span{c: £Lc =0}

@ Simple 1D Example:

Ux_uxx:1+x7 X€(0a1)
u(0) =0,u(1) =1

o Enrichments: uf — uf, = 0= uf = Cy + Ce* =
VE = span{1, &*}.
o Galerkin FEM polynomials: Vie_, . ) = span {W, X;hxf} :




Discontinuous Enrichment Method

What about Inter-Element Continuity?

DEM = DGM with Lagrange Multipliers

@ DEM is discontinuous by construction (enrichment field in DEM is not
required to vanish at element boundaries).

"Necessary condition for generating a non-singular global discrete problem.
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DEM = DGM with Lagrange Multipliers

@ DEM is discontinuous by construction (enrichment field in DEM is not
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@ Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € W

M veE -n®=-veh-n®  onre®
but making sure we uphold the...

@ Discrete Babuska-Brezzi inf-sup condition':

# Lagrange multiplier < # enrichment
constraint equations —  equations

A _ | nE
=m =5

"Necessary condition for generating a non-singular global discrete problem.




Discontinuous Enrichment Method

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that <
(5):] —rbctave = f inQ <& ‘
: c = g, on =00 . ’
. ’

A n

G =g, 0

r=u2,re

ree —renre

M = Uy o U, {renT?




Discontinuous Enrichment Method

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

) —-kAc+a-Ve = f,
(5): c =g
Ce—Cy = 0,

inQ
onl =90
on [

.“
=

Notation:

Q=ug,Q°

F=ug,re

re¢ =renre

rint — Ue/<e Unel1 {re n re/

e=




Discontinuous Enrichment Method

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

. —
(S) - —-kAc+a-Ve = f, inQ
' ¢c =g, onl= o0
Ce—Cy = 0, onr™ l
@ Weak hybrid variational form: " Q

Find (¢, \) € V x W such that:

alv,e) + b(\v) = r(v)
W b = ) -
hold ’v Ve W Notation:
olds Ve € V, Vi € W. & _ e
H Q= UnZ:'1%e
where F=uelil
re¢ =renre
a(v,c) = (kVv +va,Ve)g M = Uy oo U, {To T

b(A, V) =30 e ce Jrew A(Ver — Ve)dl + [L Av dl



Discontinuous Enrichment Method

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

. —
(S) - —-kAc+a-Ve = f, inQ
' ¢c =g, onl= o0
Ce—Cy = 0, onr™ l
@ Weak hybrid variational form: " Q

Find (¢, A\) € V x W such that:

av,e) + b(Av) = rv)
W b = —ry(p) :
hold ’v Ve W Notation:
olds Vc € V,Yu € W. 5 _ e
H Q= U,;:'19:
where F=uelil
ree =renre
a(v,c) = (kVv +va,Ve)g M = Uy oo U, {To T

bA, V) =30 > o Jreer A(Ver — Ve)dl + [ Av dl



Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC c P I.P
kEP kEE kEC cE — rE
kCP kCE 0 A h rC
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Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC c P I,P
kEP kEE kEC cE — rE
kCP kCE 0 A h rC

Due to the discontinuous nature of VE, ¢F can be
eliminated at the element level by a static condensation

@ Statically-condensed DEM Element:
RPP |~(PC CP
(l“(cp RCC)(Ah):<r

Computational
complexity
depends on dimwW"
not on dimV&




Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Angle-Parametrized Enrichment Functions for 2D

Advection-Diffusion

@ Derived by solving £cf = a- Vcf — kAcE = 0 analytically (e.g.,
separation of variables).

w)u,x ) (w)U,y )
cf(x;0,) = e( 2r e\ P "

e = {0,}{’:51 € [0,27) = set of angles specifying VE

i

-

Figure 2: Plots of enrichment functions c£(x; 6;) for several values of 6; (Pe = 20)
Parametrization with respect to 6; in (1) enables systematic element design!

11/29
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Lagrange Multiplier Approximations

Figure 3: Straight edge 1
oriented at angle o ¢ [0,27)

@ Trivial to compute given exponential enrichments:

)\h(s)lre,e/ ~ VCE . nlre,e/
— const - e{% [COS(¢_&9’91)+cos(9k_ae,e’)] (s—sf»e’)} 2




Enrichment Basis ~ Lagrange Multiplier Approximations Element Design  Nu

nge Multiplier Approximations

Figure 3: Straight edge 1
oriented at angle o ¢ [0,27)

@ Trivial to compute given exponential enrichments:

/
M~ veE -n®=—-vcE  n®

Limit n* to satisfy inf-sup:

Use H—EJ Lagrange
multipliers of the form (2)

)‘h(s)|re>e/

~ E .

~ Vc n||'e,e,
[m
= const - el “"

[cos(q&— a®®' ) 1cos(6;—a®® )] (s—s,e‘e/ )}

Non-trivial to satisfy inf-sup condition:
the set ©° that defines V- typically leads to
too many Lagrange multiplier dofs!




Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Mesh Independent Element Design Procedure

Algorithm 1 Id Your Own DEM Element”

Fix nf € N (the desired number of angles defining VE).
Select a set of nf distinct angles {6k }7_, between [0, 27).

E
Set ©° = {0;}],.
Define the enrichment functions by:

aq +|a| cos ©¢ ap+|a| sin ©¢
%)u_x,y,)e(% =175

cf(x; 0% = e(

Determine n* = LéJ
for each edge ¢ ¢

Compute max and min of 2! [cos(d) — a®¢) + cos(0 — a®° )] , call them /\fn’;/, /\f,;j,:.

Sample {/\I.e’e/ :i=1,...,n*} uniformly in the interval [/\;’iﬁ,, /\f,,’;): .
Define the Lagrange multipliers approximations on re.e by:

/ 7
e,e e,e
(

A — h
)‘hlre,e’ :span{e' = ), Ogsgh}

end for

13/29



Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Element Nomenclature

DGM Element: Q-nf-n*
DEM Element: Q-nf-n** = [Q-nf-n* U [Qi]

'Q’: Quadrilateral

nf: Number of Enrichment Functions

n*: Number of Lagrange Multipliers per Edge
Q1 : Galerkin Bilinear Quadrilateral Element

| Name | n | o° L
Q41 [ 4 ¢+{™T:m=0,..,3}
Q-8-2 8 ¢+ {M m= 07...77}

DGM elements Q-12-3 | 12 ¢+{m§;m:o, 11}
Q-16-4 | 16 | ¢+ {F:m=0,...

Q517 [ 5 | ¢+ {¥=:m=
Q92" | 9 | ¢+{¥":m
Q133" | 13 | ¢+ {¥=:m=0,..,12}
Q1747 | 17 | ¢+ {&F :m=0

DEM elements

oo
N
"~
A OON=2DRON—=




iltiplie

[llustration of the Sets ©°¢ for the DEM Elements




Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Computational Complexities

Element | ASymptotic Stencil width for (# dofs) x L? convergence
# of dofs uniform n x nmesh | (stencil width) | rate (a posteriori)
Qs Ney 9 9ng 2
Q-4-1 2Ng/ 7 14ng 2
Q 3Ne; 21 63,/ 3
Q-8-2 4ng 14 560, 3
Q-5-1* 3ng 21 63N,/ 2_3
(@] 5ne; 33 165n,, 4
Q-12-3 6ng 21 126n 4
Q-9-2™ 5ng 33 165n, 3—-4
Qs el 45 3150, 5
Q-16-4 8N/ 28 224, 5
Q-13-3* 7Ny 45 315ny 4_5
Q-17-4* 9ng 57 513ng 4-5
i —_— % —%—
:\/:
FE N ML

Figure 4: @ stencil Figure 5: @-4-1 stencil



Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Summary of Computational Properties

“COMPARABLES”

S —

A priori in A posteriori in
computational cost: convergence rate:
e DGM with n LMs and Q@ e DGM with n LMs and Q;
e DEM with n LMs and Q1 e DEM with n LMs and Q»/Qp++

@ Exponential enrichments = integrations can be computed analytically.

@ L£cf = 0 = convert volume integrals to boundary integrals:

a(ve,cF) = [(kVVvE - VCF +a- VcEvE)da
= [ VcE -nvEdT




® Q=(0,1)x(0,1),f=0
@ a=(cosg, sing ).

@ Dirichlet boundary conditions are specified on
I" such that the exact solution to the BVP is t
given by e e

@25 {lcos ¢-+cos w)(x—1)+{sin psinwl(y—1)} _ 4

Cex(X; ¢, ) =

e~ i [cos ¢+-cos +sin p-+sinp] 1

@ ¢ € [0,27) : some flow direction (not
necessarily aligned with ¢).

@ Solution exhibits a sharp exponential
boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet
number.




Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Convergence Analysis & Results (¢ = 7/7,1 = 0)

Hagnngenenus boundary layer problem, 6= 17, =0, Pe = 100
10

g, Rate # dofs
' I Element of to achieve
) % convergence | 102 error
’ o o] 1.90 63,266
10° o2 Q-4-1 1.99 14,320
& Q 2.38 24,300
z il Q-8-2 3.27 5400
[ [ 3.48 12,500
Q-12-3 3.88 850
10" Q4 4.41 8600
v Q-16-4 5.19 570
*

10" 10" 10’
h

@ To achieve for this problem the relative error of 0.1% for Pe = 10°:

e Q-4-1 and Q-8-2 require ~ 4.5 x fewer dofs than @ and Q.
respectively.

o Q-12-3 and Q-16-4 require =~ 15 x fewer dofs than Q; and Q.
respectively.
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Convergence Analysis & Results (¢ = 7/7,1 = 0)

Hagnngenenus boundary layer problem, 6= 17, =0, Pe = 100
10

g, Rate # dofs
' I Element of to achieve
) % convergence | 102 error
’ o o] 1.90 63,266
i0° 0123 Q-4-1 1.99 14,320
& Q 2.38 24,300
z il Q-8-2 3.27 5400
[ [ 3.48 12,500
Q-12-3 3.88 850
10" Q4 4.41 8600
v Q-16-4 5.19 570
*

10" 10" 10’
h

@ To achieve for this problem the relative error of 0.1% for Pe = 10°:
e Q-4-1 and Q-8-2 require ~ 4.5 x fewer dofs than @ and Q.
respectively.
= 8 x less CPU time.

o Q-12-3 and Q-16-4 require =~ 15 x fewer dofs than Q; and Q.
respectively.

= 40 x less CPU time.



Enrichment Basis Lagrange Multiplier Approximations Element Design Nu

Solution Plots for Homogeneous BVP

Figure 8: ¢ = ¢ =0, Pe = 10%, ~ 1600 dofs Figure 9: ¢ = = /7, = 0, Pe = 10°, ~ 1600 dofs

Qs

Q-12-3




Extension of Constant-Coefficient DEM Methodology Numerical Results

Extension to Variable-Coefficient Problems

@ Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ~ a® =constant inside each element Q° as h — 0:
{a(x)-Vc—kAc=f(x) in Q}~U {a° Vc—kAc=f(x) in Q°.

yi+h

[
M1l

() | = ()
X+ 2 X+2 a(j —y, x)7
Q° Q°

Yi

Xj X+ h Xj +2h
@ Enrichment in each element:

c (X ee) —e 2 (cosd>e+cos€9)(x X,,)e o (sm $C+sin 07)(y—y7 ;) c V
e




Figure 10: L-shaped domain and
rotating velocity field (curved lines
indicate streamlines)

Extension of Constant-Coefficient DEM Methodology Numerical Results

Inhomogeneous Rotating Advection Problem on an
L-Shaped Domain

@ Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L-shaped domain .

@ Source: f=1.

ea'(x)=(1-y, x).

@ Outflow boundary layer along the
liney=1.

@ Second boundary layer that
terminates in the vicinity of the

re-entrant corner
(x,y) =(0.5,0.5).




nt DEM Metl Numerical Results

Solutions Plots for Pe = 10° w 0 dof

Q Stabilized Q4 Q

Q-5-1+ Q-9-2+

* “Stabilized @;” is upwind stabilized bilinear finite element by Harari et. al.




Extension of Constant-Coefficient DEM Methodology Numerical Results

Convergence Analysis & Results

Lslyaped rotating feld, inhormogeneous problem, Pe = 1000 Rate # dofs
0 ) Element of to achieve
Stabilized 0, convergence | 102 error
o & Q 1.94 62, 721
T Q-5-1" 1.55 21,834
. . @ 267 33,707
g > Q9-2* 2.37 7,568
v e Qs 350 20,796
® e Q-13-3* 3.23 5,935
. Q-17-47 3.26 4,802
10
10" - . * “Stabilized Q" is upwind stabilized bilinear
" n " finite element proposed by Harari et. al.

@ To achieve for this problem the relative error of 1% for Pe = 10°:
@ -5-17 requires 2.9 x fewer dofs than Q. (same sparsity).

e (Q-9-2" requires 4.5 x fewer dofs than Qs (same sparsity).

e (-13-3" requires 3.5 x fewer dofs than Q, (same sparsity).




relative error

Extension of Constant-Coefficient DEM Methodology Numerical Results

Convergence Analysis & Results

Lslyaped rotating feld, inhormogeneous problem, Pe = 1000 Rate # dofs
0 ) Element of to achieve
Stabilized 0, convergence | 102 error
. & Q 1.94 62,721
T Q-5-1" 1.55 21,834
° Qs 2.67 33,707
_ e Q-9-2+ 2.37 7,568
0 e Qs 350 20,796
Q174 Q-13-3" 3.23 5,935
Q-17-47 3.26 4,802
10
10 - . * “Stabilized Qy” is upwind stabilized bilinear
" n " finite element proposed by Harari et. al.

@ To achieve for this problem the relative error of 1% for Pe = 10°:
@ -5-17 requires 2.9 x fewer dofs than Q. (same sparsity).
= 3.6 x less CPU time.
e (Q-9-2" requires 4.5 x fewer dofs than Qs (same sparsity).
= 9.2 x less CPU time.
e (-13-3" requires 3.5 x fewer dofs than Q, (same sparsity).

= 11.4 x less CPU time.

24/29



Extension of Steady DEM Methodology Numerical Results

DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation:

c+a(x,t)-Ve—rkAc=0
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DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation::
c+a(x,t)-Ve—rkAc=0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:

n+1 n
7S+ a'(x) - ve™! —kAC™T =0




Extension of Steady DEM Methodology Numerical Results

DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation:
c+a(x,t)-Ve—rkAc=0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:
7MN + a’(x)- Ve — kA =0

@ Enrichment functions inside each element at time step n are the
free-space solutions to steady version of the equation above:

Ve = span{c"(x): a" !(Xe) - V" — kAC" = 0,x € Q°}
where

VE™ = enrichment field inside element Q¢ at time step n

X = midpoint of element Q°




Extension of Steady DEM Methodology Numerical Results

Natural Convection in a Differentially-Heated Cavity

@ Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

V-u =0
MLy Vu-— G,osAu =-Vp+ Tes

G Hu-VT — 525sAT =0
where
u” = (ui(x, 1), w(x,t)): fluid velocity vector
p=p(x,t): fluid pressure
T=T(xt): fluidtemperature
= (071)2 Vi % :Oa
@ No-slip boundary conditions on u on 1 u=0
sides of box.
@ Attime t = 0 begin to heat right wall; top T=0, T
walls of box are insulating (adiabatic). u=20 Q u
0 T _ 1
on —



Extension of Steady DEM Methodology Numerical Results

Natural Convection in a Differentially-Heated Cavity

@ Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

V-u =0
MU -Vu-— tsAu =-Vp+Ter

aT W
where
u” = (ui(x, 1), w(x,t)): fluid velocity vector
p=p(x,t): fluid pressure
T=T(xt): fluidtemperature
@ Q=(0,1)7> no g=o,
@ No-slip boundary conditions on u on 1 u=0
sides of box.
@ Attime t = 0 begin to heat right wall; top 7 =0,| ¢ T
walls of box are insulating (adiabatic). u=20 Q j u
Temperature gradient induces
counterclockwise flow field 0 e 1




Extension of Steady DEM Methodology Numerical Results

Simulation: Galerkin T vs. DGM T (Ra = Gr = 1000)

u,v: Galerkin Q3
p: Galerkin Q.

T : Galerkin Q4 T: DGM Q-4-1




DifferentiallyHeatedCavity_UnsteadyNSTemp_Q1_Ra1000_20x20_2.avi
Media File (video/avi)


DifferentiallyHeatedCavity_UnsteadyNSTemp_Q-4-1_Ra1000_20x20_2.avi
Media File (video/avi)


Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-dominated transport problems in CFD.

@ Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

@ Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

@ For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

@ In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

@ Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

@ Future work: DEM for incompressible Navier-Stokes.
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